Neuronal nitric oxide synthase and calmodulin-dependent protein kinase IIalpha undergo neurotoxin-induced proteolysis.

نویسندگان

  • I Hajimohammadreza
  • K J Raser
  • R Nath
  • R Nadimpalli
  • M Scott
  • K K Wang
چکیده

Calpain (calcium-activated neutral protease) has been implicated as playing a role of neuronal injury in cerebral ischemia and excitotoxicity. Here we report that, in addition to extreme excitotoxic conditions [N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate challenges], other neurotoxins such as maitotoxin, A23187, and okadaic acid also induce calpain activation, as detected by m-calpain autolytic fragmentation and nonerythroid alpha-spectrin breakdown. Under the same conditions, calmodulin-dependent protein kinase II-alpha (CaMPK-IIalpha) and neuronal nitric oxide synthase (nNOS) are both proteolytically cleaved by calpain. Such fragmentation can be reduced by calpain inhibitors (acetyl-Leu-Leu-Nle-CHO and PD151746). In vitro digestion of protein extract from cortical cultures with purified mu- and m-calpain produced fragmentation patterns for CaMPK-IIalpha and nNOS similar to those produced in situ. Also, several other calpain-sensitive calmodulin-binding proteins (plasma membrane calcium pump, microtubule-associated protein 2, and calcineurin A) and protein kinase C-alpha are also degraded in neurotoxin-treated cultures. Lastly, in a rat pup model of acute excitotoxicity, intrastriatal injection of NMDA resulted in breakdown of CaMPK-IIalpha and nNOS. The degradation of CaMPK-IIalpha, nNOS, and other endogenous calpain substrates may contribute to the neuronal injury associated with various neurotoxins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Post-synaptic density-95 promotes calcium/calmodulin-dependent protein kinase II-mediated Ser847 phosphorylation of neuronal nitric oxide synthase.

Post-synaptic density-95 (PSD-95) is a neuronal scaffolding protein that associates with N -methyl-D-aspartate (NMDA) receptors and links them to intracellular signalling molecules. In neurons, neuronal nitric oxide synthase (nNOS) binds selectively to the second PDZ domain (PDZ2) of PSD-95, thereby exhibiting physiological activation triggered via NMDA receptors. We have demonstrated previousl...

متن کامل

Discrete cell gene profiling of ventral tegmental dopamine neurons after acute and chronic cocaine self-administration.

Chronic cocaine administration induces a number of biochemical alterations within the mesolimbic dopamine system that may mediate various aspects of the addictive process such as sensitization, craving, withdrawal, and relapse. In the present study, rats were allowed to self-administer cocaine (0.5 mg/infusion) for 1 or 20 days. Tyrosine hydroxylase immunopositive cells were microdissected from...

متن کامل

Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death.

Postsynaptic nitric oxide (NO) production affects synaptic plasticity and neuronal cell death. Ca2+ fluxes through the NMDA receptor (NMDAR) stimulate the production of NO by neuronal nitric oxide synthase (nNOS). However, the mechanisms by which nNOS activity is regulated are poorly understood. We evaluated the effect of neuronal stimulation with glutamate on the phosphorylation of nNOS. We sh...

متن کامل

Nitric oxide prevents phosphorylation of neuronal nitric oxide synthase at serine1412 by inhibiting the Akt/PKB and CaM-K II signaling pathways.

Neuronal nitric oxide synthase (nNOS) is an important regulatory enzyme in the central nervous system catalyzing the production of NO, which regulates multiple biological processes in the central nervous system. However, the mechanisms by which nNOS activity is regulated are not completely understood. In the present study, the effects of protein kinases on the phosphorylation of nNOS in GH3 rat...

متن کامل

Characterization of transcriptional regulation of neurogranin by nitric oxide and the role of neurogranin in SNP-induced cell death: implication of neurogranin in an increased neuronal susceptibility to oxidative stress

Neurogranin (Ng), a calmodulin (CaM)-binding protein kinase C (PKC) substrate, regulates the availability of Ca(2+)/CaM complex and modulates the homeostasis of intracellular calcium in neurons. Previous work showed Ng oxidation by NO donor induces increase in [Ca(2+)](i). The current study demonstrated that the gene transcription of Ng could be up-regulated by various nitric oxide (NO) donors ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 69 3  شماره 

صفحات  -

تاریخ انتشار 1997